Impact of Hair Coat Differences on Rectal Temperature, Skin Temperature, and Respiration Rate of Holstein x Senepol Crosses in Florida

T.A. Olson, M. Avila-Chytil, C.C. Chase, Jr., P.J. Hansen and S.W. Coleman

University of Florida, Gainesville; Agricultural Research Service, USDA Subtropical Agricultural Research Service Brooksville, FL

Acknowledgement

 Prime Rate Ranch of Okeechobee, Florida played a major role in this study by producing the 75% Holsteins (via a superovulation program) that were utilized in this study.

The Slick Hair Gene

- The Slick Hair gene is a single gene, dominant in mode of inheritance that is responsible for the short, shiny, hair coat of the Senepol and other breeds
- Other breeds that have the Slick Hair gene include: Carora, Romosinuano, Criollo Limonero, Blanco Orejinegro, Chino Santandereano, Reyna and other criollo breeds

Research Animals

- The primary animals involved in this study were ¾ Holstein: ¼ Senepol yearling bulls and heifers
- They were sired by two registered Holstein bulls (one red and white, one black and white)
- Their dams were two Senepol X
 Holstein F₁ cows that were paternal
 half sisters

Research Locations

- Subtropical Agricultural Research Station – Brooksville, Florida
- Beef Research Unit Gainesville, Florida

Evaluations of Environmental Conditions

- Relative Humidity (RH)
- Ambient Temperature (AT)
- Black Globe Temperature
- Temperature-Humidity Index: THI
 - = .8*AT + RH*[(AT 14.3) + 46.3]

Traits Evaluated

- Rectal Temperature
- Skin Temperature
- Respiration Rate
- Clipped Hair Weight
- Growth Rate
- Feed Intake

Weather Conditions – STARS

- Highest Ambient Temperature -- 35.5 C in June of 2000
- Temperature Humidity Index --- 103
- Lowest Ambient Temperature -- 21.0 C in February of 2000
- Temperature Humidity Index --- 73

Impact of Temperature-Humidity Index at STARS

- Correlation of THI with Rectal Temperature:
 - -0.10 (P > 0.76) in Slick Animals
 - -0.35 (P > 0.29) in Normal-haired Animals

These results are somewhat confusing but apparently indicate that the ambient conditions across the months didn't effect rectal temperature at STARS

Rectal Temperatures of Slick and Normal-Haired Holstein Crosses at STARS

- September
 - -Slick 39.4 C Normal 39.7 C P < 0.05
- October
 - -Slick 39.3 C Normal 39.8 C P < 0.05
- November through June
 - No significant differences between slick and normal-haired animals

Average Daily Gain of Slick vs. Normal-haired Animals at STARS

 The average daily gain over a period of a year at STARS did not differ between slick and normal-haired animals

Slick 1384 grams per day

Normal 1345 grams per day

 This is comparable to results comparing slick vs. normal-haired beef animals at the same location

Why didn't the slick ones gain faster?

- I don't know for sure
- Apparently the heat stress wasn't sufficient to trigger an effect on growth under these conditions
- These cattle always had access to shade and their temperatures never were recorded over 40.1 C

Second Study

Beef Research Unit

July-August

Environmental Conditions at the Beef Research Unit

- Average Ambient Temperature -- 32.9 C
- Average THI -- 99.7
- Highest Ambient Temperature 36.0
- Highest THI -- 107.0
- Highest Black Globe Temperature --56.5 C

Effect of Hair Type on Rectal and Skin Temperatures at the Beef Research Unit

			Rectal	Skin
Hair			Temp.,	Temp.,
Type	Days	No.	С	С
Slick	24	8	38.99	37.49
Normal	24	8	39.32	38.03
Difference	A A A A A A		- 0.33*	- 0.49*

Respiration Rates of Slick vs. Normal-Haired Animals at the Beef Research Unit

- Slick-haired animals
 56.6 breaths per minute
- Normal-haired animals
 69.0 breaths per minute
- This difference was significant at the 0.05 level

Black Globe Temperature Categories

• BGTC1 < 40.0 C

• BGTC2 40.0 - 44.9 C

• BGTC3 45.0 - 50.0 C

• BGTC4 > 50.0 C

Black globe temperature classes

Reduced Respiration Rates of Slick-haired Animals

- The advantage of slick-haired animals was similar to that of shaded vs. unshaded animals shown by Brown-Brandl et al. (2001)
- It is also comparable to the advantage of zebu-crossbred over unadapted Bos taurus animals

What is the advantage of a reduced respiration rate?

- Adapted cattle are less affected by higher heat loads and thus are able to maintain lower respiration rates at the same temperatures.
- They are thus more efficient, as a result of using less metabolic energy to maintain a normal body temperature.

Respirations per minute

Feed Intake of Slick vs. Normal-haired Animals

- We expected that the slick-haired animals would consume more feed
- Heat-stressed animals eat less
- The slick ones did eat somewhat more:
 - Slick 27.0 g of feed per kg live wt/day
 - Normal 26.7 g of feed per kg live wt/day
 - This difference, while small, did approach significance

Objective Evaluation of Quantity of Hair on Slick and Normal-haired Animals

- Slick-haired animals 11.47 mg/cm²
- Normal-haired animals 17.82 mg/cm²

 This difference is significant at the 0.05 level

Quantity of Black vs. White Hair on Spotted Animals

Black Areas

11.02 mg/cm²

White Areas

18.28 mg/cm²

 This difference is almost identical and of the same probability, 0.05, as the slick vs. normal hair difference!

Quantity of Black vs. White Hair on Spotted Animals

 The difference in quantity of hair of slick vs. normal-haired animals was nearly twice as large in black vs. white areas

 The weight of clipped white hair from slick-haired animals was only slightly less than that of clipped black hair from normal-haired animals

What is the importance of these white vs black hair results?

- Answer: We don't know yet. It seems that a solid, light red animal, like that of most of the Criollo breeds might be the preferred coloration.
- Holsteins with higher percentages of white have been shown to be superior in Florida but these animals don't graze and thus, are not as susceptible to sunburn.

Conclusions:

- In addition to producing a shorter, shinier hair coat, the Slick Hair gene also results in animals having the ability to maintain lower rectal temperatures
- This reduction in rectal temperature appears to be up to 0.5 C, the same reduction as 50% or more zebu influence in crosses provides

Conclusions:

- Cattle with the Slick hair gene also have slower respiration rates while maintaining lower body temperatures
- This should allow them to be more efficient
- Such cattle aren't likely to be more productive unless placed under grazing conditions under heat stress

What is next?

- Identification of the genomic location of the Slick Hair gene
- Sequencing of the Slick Hair gene
- Evaluation of the impact of the Slick
 Hair gene on milk yield, reproduction
 and survival in commercial dairies in
 south Florida and Puerto Rico

Puerto Rican Slick-Haired Holstein Cow #66

Also

- Production of homozygous slick, red Holsteins
- Evaluation of the impact of the Slick
 Hair gene on growth and semen
 characteristics of Holstein bulls
- Possible importation of Reyna semen for use in dairy crossbreeding programs

First Lactation Reyna Cow in Nicaragua

